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pentadienyl rings are pentagonally symmetric and 
ionically bound in both compounds. Exposure of 
Sm(C6H5)I2-C1H8O to traces of air produces an immedi­
ate color change from deep purple to yellow-gray and a 
drastic reduction in the paramagnetism. Although 
the resulting material had a relatively sharp X-ray 
powder pattern, analytical data were not reproducible; 
consequently, this product was not further charac­
terized. 
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A Novel Example of the [H6O2] +Ion. A Neutron 
Diffraction Study OfHAuCl4^H2O

1 

Sir: 

The oxonium ion (H3O)+ has been postulated for 
many years to be the dominant protonated species in 
aqueous acid solution. Its existence in the crystalline 
state has also been predicted and directly confirmed by 
X-ray diffraction studies of several acid hydrates. 
Other aquated proton species such as H5O2

+, H7O3
+, 

and H9O4
+ have also been suggested as possible entities 

in solution or the crystalline state. The higher species 
are generally assumed to be aquated oxonium ions, 
(H3O

+-ZiH2O). Recently, both neutron and X-ray 
diffraction studies2-5 have reported evidence for the 
first of these, the H6O2

+ ion, in several crystals. In 
each case the H6O2

+ entity has been observed as a non-
planar complex of otwo H2O molecules linked by a very 
short (2.42-2.50 A) linear hydrogen bond with the 
bridging proton presumably located at or near the bond 
center. 

We wish to report a novel example of (H4O2)+, 
observed in HAuCl4-4H2O crystals by neutron diffrac­
tion, in which the bridging proton distribution may be 
described in terms of a double minimum potential. 
The bridge length (O-H-O) in this compound is 2.57 ± 
0.01 A, and the bridge protons are found to be sym­
metrically disordered about the bond center and, sur­
prisingly, in off-axis locations. 

Single crystals of HAuCl4 • 4H2O protected in sealed-
glass capillaries were examined by X-ray and neutron 
diffraction techniques. The monoclinic cell param­
eters are a = 11.78,* = 4.62, c = 8.89 A; /3 = 101.9°; 
and Z = 2. The space group, confirmed by statistical 
tests and successful refinement, is C2/m. A full three-
dimensional neutron structure investigation, utilizing 
853 independent reflections measured at X 1.052 A 
on the Argonne computer controlled diffractometer,6 
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Figure 1. Projection on the ac plane of the unit cell contents of 
HAuCl4 -4H2O. Cross-hatched atoms lie in the mirror plane inter­
secting y at O. Circles are used to represent atoms which are, in 
order to decreasing size, Au, Cl, O, and H. The Cl atoms des­
ignated ± lie above and below the mirror plane in apparent dis­
order. The [H5O2]+ group consists of two 0(1) and two VzH(I) 
atoms in the mirror plane plus two pairs of H(2) atoms which pro­
ject onto the mirror as two atoms. Dashed lines indicate hy­
drogen-bonded and other close atom approaches. 

was carried out. The structure was solved directly 
from the neutron Patterson function. A chlorine 
atom disorder in the structure was recognized at the 
initial Patterson stage. Structure refinement was 
carried out by Fourier and least-squares methods; the 
final R factor was 9.7 %. 

The crystal structure, shown in b axis projection in 
Figure 1, consists of layers, extending parallel to a and 
b, of square-planar (AuCl4)- ions stacked along b with 
interleaved layers of (H6O2)+ ions interconnected by 
H2O molecules. The (AuCl4)- groups are tilted with 
respect to the mirror plane which gives rise to the mirror 
image tilted configuration and the chlorine atom dis­
order mentioned above. Packing considerations sug­
gest that the (AuCl4)- groups are stacked along b in an 
orderly fashion within one layer; thus the disorder 
may be attributed to random variations in stacking 
from layer to layer. 

The (H5O2)+ groups, distinguished by the short 
O-H-O bridge distance and the extra proton, are 
linked by water molecules by means of normal hydrogen 
bonds (2.74 A) into infinite chains extended along the b 
axis. The repeating unit in the chain is (H9O4)+ 
which, as can be seen in Figure 2, has a markedly 
different configuration than the trihydrated oxonium 
ion (also H9O4

+), proposed by Wicke, Eigen, and 
Ackermann7 as a major component of aqueous solu­
tions of strong acids. Another unit which may be of 
significance is the (H14O6)

2+ ring shown in Figure 2 
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Figure 2. [H5O2]"
1" groups assembled into a ring which is a link of 

a chain extending along b. The repeating unit is [H9O4]"
1". The 

H2O molecules which bind the [H5O2J
+ groups together are rather 

loosely held and display large thermal motion. Large circles are 
oxygen and small circles hydrogen atoms. 

Figure 3. Configuration of the [H5O2]+ ion. The two O(l) and 
the two 1AH(I) sites are coplanar. The four H(2) sites are sym­
metry related. The group configuration is strictly trans. The 
O-O separation is 2.57 ± 0.01 A and the 0 - H - • -O angle is 172°. 

which is a link in the protonated water molecule chain. 
Hydrogen-bonding interactions between adjacent chains 
as well as those between adjacent (AuCl4)- and 
[(H5O2)+-2H2O] layers appear to be weak or absent. 

The most interesting structural feature is the (H5O2)+ 
group which is illustrated in Figure 3. The required 
symmetry of the group is 2/m and the configuration is 
trans as indicated. The bridging proton, originally 
expected to be centered, definitely refined to disordered, 
off-bond-line positions with a site separation of 0.62 A. 

This rather remarkable configuration raises inter­
pretative problems. There is an intriguing similarity 
between the now well-known pyramidal oxonium ion 
and the two symmetry related halves of the (H5O2)+ 
group described here. This suggests that (H6O2)+ is 
simply (H3O+-H2O). The static disorder which this 
implies and the nonequivalence of the three 0 - H • • • O 
bonds involved tend to weaken this interpretation. 
We prefer to consider the grouping a variant of the di-
aquated proton8 with an unusual symmetrical double-
well potential. The dynamic disorder implied in this 
interpretation should be verifiable by spectroscopic 
measurements. Such measurements are now in prog­
ress. 
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The Geometry of the Transition State of the Retrograde 
Homo Diels-AIder Reaction. A Stereospecific 
Conversion of 1,3- to 1,4-Dienes1 

Sir: 

The efficiency with which a small ring transmits 
conjugative and orbital symmetry influences can be 
evaluated from a knowledge of the stereochemistry of 
the homo Diels-AIder reaction (1 ^ 2). The present 
work describes a solution of this problem for the retro­
grade (2 -*• 1) monohomo case (n = I).2 The results 
demonstrate that a cyclopropane ring exerts strict 
control of the stereochemistry of the olefinic product, 
even in the face of strongly countervailing steric effects. 
They also provide a stereospecific synthetic method for 
homologation of 1,3-dienes to 1,4-dienes. 

(CH2). I! ^ (CH2)n^ i 

1 

Model studies of ordinary Diels-AIder retrogression 
show a high degree of stereospecificity. Thus, oxida­
tion of the cis hydrazo compound 3 by air, or prefer­
ably of an ether solution by yellow mercuric oxide or 
manganese dioxide in the presence of anhydrous sodium 
sulfate at 25°, gives a nearly quantitative yield of 
nitrogen, presumably via the very unstable azo com­
pound 4. Vapor chromatography (vpc) of the solution 
shows /rans,frans-2,4-hexadiene (5) as the only volatile 
organic product under analytical conditions that would 
reveal 0.1% cis,trans- or c/s,,c/5-2,4-hexadiene. Simi­
larly, oxidation of ?ra«s-hydrazo compound 6 gives 
only cw,*rans,-2,4-hexadiene (8).3-8 The ultraviolet 
chromophore of the presumed azo compounds 4 and 7 
is not observed, even at —50°. The exceptionally high 
rate9 and stereospecificity suggest double bond partici­
pation in both the rate- and product-determining steps 
of the decomposition of 4 and 7. Although one cannot 
strictly exclude a two-step mechanism with an inter­
mediate (e.g., 11) in which loss of nitrogen is much 
faster than bond rotation, a simple and conceptually 
economical alternative would picture the reaction 
as a concerted, orbital-symmetry-allowed10 retro-Diels-
Alder process. 
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